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ABSTRACT

This report presents the theory of the combined optimization problem, which
is the problem of determining optimal controls on the basis of noisy measure-
ments on a randomly disturbed plant. Solution of this problem involves elements
of optimal control and optiﬁal estimation and may be reduced to the solution of
two recursion relations, the control equation and the estimation equation. De-
tailed discussion of an important special case, the linear case 1s given and

examples of this and the general case are presented.
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SUMMARY

The present report describes part of the work performed by Stanford Research
Institute for the NASA Ames Research Center, Mountain View, under
Contract NAS 2-2457.

Combined optimal control and estimation is synthesis of control systems
that maximize performance when only noisy and incomplete information about the
state of the plant to be controlled is available. This problem contains ele-
ments of both optimum control and optimum estimation theory. An exact solu-
tion to this combined problem is derived, and it is shown that, with the proper
definitions, the optimum system consists of simply cascading an optimum esti-

mator with an optimum controller.

A complete literal solution of the problem 1s given for the special case
of linear systems, Gaussian noises, and quadradic performance measures. Ex-
amples are presented for this case illustrating how the theory can be used to
investigate the relation between the characteristics of information-handling

components and systems performance.

For the nonlinear case, where literal solutionms do not exist, a simple ex-
ample is presented to demonstrate the numerical solution of the recursive
equations governing control and estimation. This example also illustrates
Feldbaum’s ‘“dual-control’ concept; that is, the idea that control action may

be used to gain information as well as control the plant.






I INTRODUCTION

Since October 1964, Stanford Research Institute has beenperforming research
for the NASA Ames Research Center, Moffett Field, California, under
Contract NAS 2-2457.

The central objective of this study is to relate the performance of a con-
trol or guidance system to the information-handling characteristics of 1its key
components, notably its measurement subsystem, with the aim of developing im-
proved exact and approximate synthesis techniques. In the course of the study,
it became apparent that a unified theoretical framework was needed to handle
such questions (ref. 1). One such framework is the theory of optimal control

and estimation, which is discussed in the present report.

A major drawback to optimal control theory is that i1t requires knowledge
of the complete state of the plant. 1In classical control theory—and, more
often than not, in actual practice——only some of the state variables are
measured. Optimal control theory can be generalized to consider such
situations—the result is the theory of

combined optimal control and estimation

(see fig. I-1). 1In this problem, a JJ' Lli

plant is given and measurements on this x MEASURE - .2
. . . ———5{ PLANT [ WENT

plant are available. It is desired to SYSTEM

determine the inputs to the plant on

the basis of the measurements in a

COMBINED
manner that optimizes systemperformance. CONTAI';‘%Luwc___——:j
The stochastic and deterministic optimal ESTImATOR
TA-5237-13
control problems, as well as the optimal
estimation problem, are special cases of FIG. -1 COMBINED CONTROL AND
ESTIMATION

the combined optimal control and estima-

tion problem.

Since the conditional probability density of the state summarizes all in-
formation presently available about the future behavior of the system, the
solution of the combined optimal estimation and control problem can be divided
into two parts—control, which is the selection of the optimum input to the

plant as a function of the conditional probability density of the state of the



plant, and estimation, which is the computation of this conditional probability
density. These two aspects of the problem may be solved by means of two recur-
sive equations: the control equation generated by dynamic programming, and the

estimation equation generated by application of Bayes’ rule.

If the system is linear, the random effects Gaussian, and the performance
quadratic, then the problem greatly simplifies and the solution is well known
(refs. 2, 3, and 4). In this case, the optimal control is just a linear func-
tion of the conditional mean of the state of the plant. This linear function
may be found by solving the optimal control problem under the assumption that
the state 1s known. The conditional mean may be generated by a linear system
which i1s, in fact, the Kalman filter (ref. 4). In the general case, unfortu-
nately, all moments of the conditional probability distribution are needed for
the computation of the control at a given time; however, approximations may be

made and will be investigated in detail in future work.

The basic reason feedback is used in control systems 1s because there
exists uncertainty about the plant to be controlled. Therefore, sensors are
used to gain this missing information. Even with sensors, uncertainty is
present because of sensor imperfections; however, by use of filtering tech-
niques and control action, this uncertainty can be reduced and performance

can be 1increased.

Because of the cost of measurement and computation, one wants to know how
complex the techniques used to gain formation about the plant have to be to
give adequate control. Intuitively, the answer depends upon two factors—how
large the uncertainty about the plant is without measurement (i.e., how little
a priort information there is) and how much value 1s gained by reducing this
uncertainty. By comparing optimal performances when ideal and when real
(nonideal) measurement system compoenents are used, these qualitative concepts
may be made quantitative. The linear case, for which the solution is simple,
provides an excellent example for i1llustrating the value and the uncertainty

aspects of control problems.

Since, in general, there are many ways of getting the same information
for a given control problem, there will also be many configurations that give
the same level of performance. Combined optimization theory provides a method
of comparing alternative configurations. Furthermore, 1n many cases it will
be possible to simplify the controller and estimator without degrading per-
formance. Because a fixed-structure system can be looked upon as a plant to
be controlled that has no -control inputs, the equations developed for solving

the optimal control and estimation problem may be used to calculate the



performance of systems containing simplified and suboptimal versions of the
optimal controller-estimator. In general, the presence of a priori information
reduces the need for gaining information about the system and thus allows

simplification of the measurement system and controller estimator.

The author would like to express his gratitude for the many fruitful dis-
cussions with his colleagues, John Peschon, Robert Larson, Phil Merritt,
Edward Fraser, and Wade Foy at Stanford Research Institute and with
Brain Doolin, Elwood Stewart, Rodney Peery and Gerald Smith of Ames Research

Center.






IT GENERAL THEORY

In this section, the general theory of combined optimal control and esti-
mation is presented. After stating the problem, we derive two recursion
relations—the control equation and the estimation equation, which together

provide the complete theoretical solution of the problem.

A. PROBLEM STATEMENT

The purpose of this part is to state mathematically the combined optimal

control and estimation problem discussed in general terms in Sec. I.

1. NoTaTioN

Before proceeding further, it is desirable to describe briefly the nota-
tion used in this report. The symbol p(x/y) denotes the probability density of
x given the value of y. Similarly, E{x/y} represents the expected value of x

given y. Subscripts indicate time, t.e., x, 1s the value of x at the kth time

k
instant. Lower-case letters are used for vectors and upper-case letters for
matrices. Components of vectors and matrices are denoted by superscripts in

parentheses, i.e., x(*)

is the kth component of the vector x. The capital
letter [/, represents the set (u,,...,u,) for any time-dependent vector u,
Finally, in the investigation of the linear case, circumflexes (A) are used to
distinguish quantities related to estimation from similar quantities related to

control.

2. STATEMENT OF THE CoMBINED OpTIMAL ESTIMATION
AND CoNTROL PROBLEM

The statement of the problem 1s given
(1) The plant, described by

X1 = felxu,,w,) (2-1)
where

x, 1s the state vector
u, 1s the input vector

w, 1s the disturbance vector.



wheve

(4)

(5)

(6)

Find:
The

(1)

(2)

For

referred

The measuremeut system, described by
2, = hk(xk,vk) , (2-2)

L 1s the measurement vector

is the measurement noilse vector

The probability distributions

(a) p(xo) (2'33)
(b) plw;) i = 0, , N (2-3b)
(e) plv)) i = 0, , N (2-3c)

The assumption that w, and v, are independent and white and that

x, is independent of both v, and v, that 1s

plxy,w,,v,) = p(xo)p(wi;b(vj) (2-4)

The performance index

~
0
txy
M=

I(x.,u.,1) (2-5)

The admissibility constraints

u, € Q. (2-6)

1 4 T

admissible combined controller and estimator that minimizes J, where

A combined controller and estimator is defined as any algorithm
which at time k generates u, as a function of the present and
all past measurements (z,, ..., zo).

An admissible controller and estimator is defined as any con-
troller and estimator which, when used in the closed-loop system
shown 1n Fig. [-1, yields admissible u,.

simplicity the combined optimal control and estimation problem are

to as the combined optimization problem in what follows.



3. Discussion
a. EXISTENCE OF SOLUTION

The stated problem has a solution only if there exist admissible
combined controllers and estimators. Fromthe state and measurement equa-
tions (2-1) and (2-2) and the given probability distributions, it is possible
to calculate all of the conditional probabilities needed to evaluate J for any

admissible combined controller and estimator.

b. OTHER TREATMENTS

Several special cases of the combined optimization problem have been
then the problem reduces to the
R 0, then

the problem reduces to the conventional optimal control problem. The optimal

treated extensively in the past. If 2, ¥ x,,

stochastic optimal control problem (ref. 5); and, if in addition w

estimation problem results when f is independent of u; in this case u the

k 1
computer output, is the best estimate of x, under the criteria provided by J.

Gunckel (ref. 2), Tou and Joseph (ref. 3), and Kalman (ref. 4) have
solved the combined problem under the conditions that (2-1) and (2-2) are
linear; that Xos Vg, and w, are Gaussian; and that l(xk,uk,k) is juadratic.
Sussman (ref. 6) and Aoki (ref. 7) have considered the general problem as
stated above; the development given here was obtained concurrently and inde-
pendently and is similar to theirs. Feldbaum (refs. 8, 9) treats the same
problem in a different, but entirely equivalent, formulation. (Section V con-
tains a demonstration that Feldbaum’s dual-control problem and the combined
optimization problems are the same.) Kushner and Wonham have done considerable
work on the continuous time variant of this problem; refs. 10 and 19 contain

bibliographies listing their work as well as related work by other authors.

C. RELATION TO THE INFORMATION REQUIREMENTS
IN CONTROL SYSTEMS

The typical control system, Fig. II-1, will contain such information
handling components as sensors, communications channels, and actuators. In
general, not only the plant, but these devices also, include dynamics (ref. 1).
It is a simple matter to treat such a situation as a special case of the com-
bined optimization problem by augmenting the state vector of the given plant
with the state variables governing the information handling components. Simi-
larly, adaptive and learning control problems may be treated by augmenting the

state to include incompletely specified parameters.
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CONTROLLER [T """> ACTUATOR [T_———> PLANT

SENSORS <

fl

FIG. ll-1 CONTROL SYSTEM CONFIGURATION

r o= commandinpuh y = sensor input, y* sensor output,
w = perturbation, u = control decision, v = measurement noise

TaA-5237-25

The combined optimization problem provides an excellent framework for
evaluating the effects of information-handling components on system performance.

The optimum combined controller and estimator is first synthesized for ideal

information-handling components (t.e., for z, = x,) and next for the actual com-
ponents. The degradation in performance is then obtained by comparing the per-
formances for the two cases. Sometimes, 1t is possible to get an analytic

expression for performance as a function of sensor characteristics, while in
other cases, simulation techniques are needed. By fixing the desired perfor-
mance, one can speclfy the sensor characteristics as well as the trade-offs

between sensor configurations.

In Sec. IV we will consider, in detail, the analysis of the effect of

information-handling components on system performance.

B. CONTROIL EQUATION

The solution to the combined optimization problem i1s a set of functions
uO(ZO), ul(Zl), L uN(ZN). Rather than finding these functions, we prefer to
find their values for each possible argument, thus reducing a minimization over
functions to a minimization over values. This process is accomplished by ap-
plication of dynamic programming. Two steps are necessary-—first, the given
problem 1s embedded in a series of similar problems in which the initial time
1s not zero but varies from 0 to N, and second, a recursion relation is devel-

oped for solution of the series.

10



1. EMBEDDING

To perform the embedding process, consider the series of modified combined

optimization problems with the following cost functions:

~
i

N
. = ELZ Hx“uwiﬁa_p%_& 0 <k <N

N
Jy J = E{:ZO l(xi,ui,i)} . (2-7)

The new problems may be interpreted as combined optimization problems in which
the first & — 1 controls have been picked arbitrarily and for which we must se-

lect the remaining controls in an optimal fashion.

Consider k& = N with

Jy = E{l(xy,uy . N)/Zy_ | Uy} . (2-8)

To solve this problem, we must find

min J . (2-9)
u(z)N
NN
Note that since Jy contains Z,_ | and U,_, as parameters the result will be a

specification of u, as a function of Z, and U,_,.

N

We wish to replace the minimization over functions (2-9) by a minimization

over values. In Appendix A, it is shown that
E{F(x)} = E{E[F(x)/y]} . (2-10)
x y =z

where the symbol under the £ indicates which variable the expectation is taken

with respect to. To make use of this formula, the expectation is expressed as

an integral:

11



min J, = min  E{Ell(xy, uy.NY/Zy, Uy 1/Zy . Uy_\}

N) N N

= min | E {l(xN,uN,N)/zN,ZN_,,UN_l}p(ZN/ZN_l,UN_l)dZ"
LV ] z x

N N N N

= I min E{l(xN'uN'N)/ZN’ZM"I’UN-l}p(ZN/ZN-I’UN-l)le
N R

E{min E[l(xN,uN,N)/ZN,UN_l]ZN_l,UN_l} . (2-11)
TN N TN

The minimization over functions has thus been replaced by a mini-

mization over values.

1f I‘(Zk'un—l'k) is defined by

N
I*(Zk,Ub_l,k) = min E{'Z l(xi,ul.,i)/Zk,Uk_l} , (2-12)
uh'"k+1(zb+1)""’"ﬂ(zN ..... zh+1) i=h
then (2-11) becomes
min Jy = E{I*(Zy,Uy_\.N)/Zy_,. Uy} . (2-13)
uN(IN) zN

If the analysis given above for R = N i1s repeated for general k, the result is

u,(1,) ( min (i y Je = E{I*(Z,.U,_;.0)/2, ;,U,.\} . (2-14)
ARTO L IO EFPRE 2 reesaly IN ..... 1, R

In particular, if we can find I1*(Z,;,0), then we will have solved the original

problem.

2. Recunrsion RELATION

Since the first term of the summation in (2-12) does not depend upon u, for

i > k, (2-12) may be rewritten [with the aid of (2-7)]:

12



’ N
I'(*,k) = min [?[l(x,,uh,k)/ig,uh_l] + min E{ s l(xi,ui,i)/Zk,Uh}]
up uh+1( ) B u~( ) i=k+
= min E[l(xk,uh,k)/ia,bl_l] + min Je1 , (2-15)
ub uk+l( ) ..... un(-)
where the arguments have been suppressed for simplicity. Note that because the

minimization has been split into two parts, u, must be added to the conditioning

variables, t.e.,

%,y J

min E{F} min [min E{F/x}] (2-16)

If (2-14) is substituted into (2-15) the following recursion relation

finally results:

I'Z,.U,_.k) =.mn{5[uxpupk»2puk1]+ E szhqihja—nﬁgiu}
-k Zh 1h+l

min J E P(xk,uk,k) + K ([‘{hk+1[f;(xb’“k'“%)'Uh+1]*2;'bu'k + 13 /Z;,La]
e Tk "k Ukl
0<k<N (2-17)

where the last step is performed by use of (2-1), (2-2) and (2-14).

3. DiscussioN
By use of (2-12) and (2-17), the combined optimal control and estihation

problem may be solved as follows: From (2-12)

N) = min E [l(xN,uN,N)/ZN,UN_l] . (2-18)
¥ TN-1

*
I (ZN1UN—1'

If the minimization is performed for each value of the argument, uy can be found
as a function of Z, and Uy_;. (This will of course usually require quantization
of the variables.) The resulting I*(',N) may be substituted into (2-17) and
I*(',N - 1) and uN_l(') may be found, and so on. The result is the series of

functions

13



u, = uo(zo)
up ot ul(zl,zo,u0

'"2(22‘21'10'"|'“ )

u,) (2-19)

This set of optimal controls depends upon the past controls as well as the past
and present measurements; however, by substitution of the first equation into

the remainder, u, can be eliminated and so on; the result 1s a set of optimal

0
controls, each based on the past and present measurements at the time of

application.

At each step, the minimization 1s performed over only those controls lead-
ing to admissible values of u_  and x.,,- 1If at any step no such control

exists, then the problem is unsolvable as formulated.

4. OpTiMaL CONTROL

If z, = x,, then we have the optimal control problem. Since the future

behavior of the system is governed only by x,, and future inputs u  and dis-

turbances w,, t > k; the recursion relation (2-17) becomes
I'(x,,k) = min (l(xh,uk,k) t E{I'[f, (x,, u,,0,) k + 1]}) . (2-20)
Yk )

which 1s the functional equation for the stochastic optimal control problem
derived by Bellman (ref. 5). If no disturbance inputs exist, then (2-20)

reduces to

I'(x,, k) = min {I(z,,u,,k) + I"[f (x,,u,),k+ 11} (2-21)
e

which 1s the recursion relation for the optimal control problem.

C. ESTIMATION EQUATION

Calculation of the expectations appearing in (2-17) and (2-18) requires

knowledge of p(x,/Z, ,U In this pért we will show how this probability

Ic—l)'

14



distribution may be calculated in a recursive manner by application of

Bayes’s rule.
1. HBREecursioN RerLATION
We assume that p(xk/Zk,Uk_l) is known and compute p(xk+1/Zk+1,Uk), from

it and the given probability distributions. From Bayes’s rule

( 7 ) P(2y /%1 2. U P(x, /24, U,) (2-22)
x = . -
P{Xs1/dy iy Uy p(z,,,/Z,.U,)

Because v  is white and because of the absence of dynamics 1in the measurement
equation (2-2), z,,, is independent of past measurements and inputs if x, .,
18 given:

P(zyay /%1020, U = P2y /%400) . (2-23)

This probability density may be calculated from knowledge of p(v,,,) and the

measurement equation (2-2). From the properties of marginal distributions

pxy 4y /Z,.U,) = j;hp(xk+1'xk/zk‘uh)dxk : (2-24)

Again, from Bayes’s rule,

P(xk+1'xk/zkluk) = p(xk.‘,l/xklzk)Uk)p(xk/zkluk)

plxy /x . u)p(x, /2, U, 1) (2-25)

since the present state is independent of the present input and the next state
is independent of past inputs and measurements if the present state and input
are given. From the state equation (2-1) and from the known p(w,),
p(x,,,/x,,u,) can be calculated. The denominator in (2-22)1s the integral of
the numerator; hence from (2-22), (2-23), (2-24) and (2-25), the following

recursive relation is finally obtained:

PCzy iy /%4 4y) J;k p(xk+1/xk,uk)p(xk/Zk,Uk_l)dzk

P(xk I/Zk U ) =
' T J;;.+1p(zk+1/"h+1) J;kp(xk+l/xk’uk)p(xk/zk’uk-l)d1k+1
0< k<N (2-26)

15



where

A B p(zy/x5)p(%,)
plxg/Zy 1) = plxy/zy) = : (2-27)
. Jo, Plzo/x0 P xy)dx g

2. INFORMATION STATE

Suppuse there exists a quantity Y, such that

ple, 2 '”k-l) - p(xk/Yk) ) (2-28)

k

Then it is clear that the control u, can be based upon Y, rather than Z,
and U, _,-

Any vector Y, which satisfies (2-28) will be referred to as the informa-
tion state of the system. The relation between the information state and the
concept of sufficient statistics is apparent; a sufficient statistic for pre-

dicting future behavior of the system i1s a possible information state.

In some special cases, such as the optimal control problem and the linear,
Gaussian combined optimization problems, the dimension of Y, may be reasonable;
however, in the genqral case, the minimal-dimension 1nformation state 1is
Z,.U,_;; hence its dimension grows in time. For this reason, approximation
techniques for solving the general problem will be required. Possible approxi-

mations will be considered in Sec. V-C.

3. OptimaL ESTIMATION

Suppose f is independent of u,, then the future cost is independent of
the choice of u, (see fig. I1-2). In this case the recursion relation (2-17)

reduces to

1°(Z,, k) = min E{1(x,,u,,k)/Z,] (2-29)
Yk
U'k ka
X 4
X MEASUREMENT |k =%
PLANT ;} SYSTEM p ESTIMATOR [ u, %,
TA—5237-14

FIG. li-2 OPTIMAL ESTIMATION

16



. . . . A .

If we identify u, as being the estimate x, of x,; then the problem is seen to be
the optimal estimation problem. For example, x, might represent a signal and
the measurement system a communication channel. Typically the loss function

would take the form
I(x,,u,, k) = l*(xk - u,, k) . (2-30)

Knowle&ge of the conditional probability distribution p(x,/Z,) is suffi-
cient to determine the optimal estimate given any loss function. The approach
to optimal estimation based on updating the conditional probability distribution
as was done in Part C-1 above is known as the Bayesian approach and has been

studied by Lee (ref. 11), (ref. 12), and Peschon (ref. 13).

D. AN ALTERNATIVE VIEWPOINT

In the above formulation, we have calculated the control as a function of
past and present measurements. However, the conditional probability
p(xk/Zk,Uk_l) summarizes all the information about the future behavior of tlLe

system contained in these measurements; therefore,
a
pk = p(x,/2,.U,_)) (2-31)

is a suitable information state. In terms of pk, the control equations (2-17)

(2-18) become

I"(p,. k) = min {L(P, u,. k) + ELIT(P,, ., k + 1)/P, u, ]}
Y
0 <k <N
I"(By.N) = min L(Ry, uy.N) (2-32)
where '
L(P,,u, k) = Ell(x,,u,,k)/Z,,U,_]

= thl(xk,uk,k)p(xk/Zk,Uk_l)dxk : (2-33)

Since pk is a function, both I*(',k) and U(-,k) will be functions of
functions, i.e., functionals. It may appear silly to replace functions of a
finite (albeit growing) number of variables with functionals, which are in

essence functions of an infinite number of variables. However, in considering

17




approximate techniques such a procedure may prove useful; furthermore, it re-

sults in separation of the combined optimization problem into two parts:

Control—The optimum inputs are found as a function of the con-
ditional probability distribution p(x,/Z,,U,_,) by solution of
the recursion relation (2-32). In general, this process is
carried out a priori. '

Estimation—The conditional probability distribution is updated

by use of recursion relation (2-26). In general, this process
will be done in real time.

Note that (2-26) will usually be required to calculate E[I‘(pk+l,k t 1)/

Wk,li]. In the linear case discussed in the next section literal solutions may

be obtained to the two problems. Section V presents a simple example of how

the calculation proceeds when no such literal solution exists.

18



III LINEAR CASE

In this section, we consider the important linear case of the combined

optimization problem, in which a complete analytic solution exists.

A. DEFINITION

The linear case of the combined optimization problem refers to the situa-

tion in which the following assumptions hold:

(1) The plant and measurement systems are linear, i.e.,
(a) =z, = Ayx, * Bu touy (3-1)

(b) 2z Cox, t v, (3-2)

(2) The performance index is quadratic, i.e.,
it

l(xi,ui,i) = x{Qixi + uTR u, (3-3)

(3) The probability distributions are Gaussian, i.e.,

— A _
(a) plxg) = ¢, exp [(x, - xo)T(Q_l)_l(xO - x4)] (3-4a)
A
(b) p(w,) = ¢, exp [w[Q;lwk] (3-4b)
A
(¢) p(v,) = ¢, exp [vIR;lvk] (3-4c¢)

where €,, €45, C,.are constants of no consequence here and where:

3

A
Q., = a priori covariance of x,

A

Q, = covariance of the disturbance at time k

A

R, = ~covariance of the measurement noise at time k
xg = a priori mean of x,.
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B. SOLUTION

The solution to the combined optimization problem in the linear case is
well known (refs. 2, 3, and 4). 1In this section, we present the solution;

Appendix B gives the detailed derivation. Figure JI[-1 illustrates the opti-

mal solution.

ONTROLLER AND ESTIMATOR TA-5237-15

(2]

FIG. Il1l-T  LINEAR COMBINED CONTROL AND ESTIMATION

1. EsTtiMmaTiON

The assumptions given in Part A imply that p(x,/Z, ,U, _,) is Gaussian;
hence it is sufficient to give equations for updating the conditional mean and
conditional variance. In Appendix B these equations are obtained by application
of the estimation equation (2-26). The key to solution of this equation is

completion of squares and the results are

Teererr = Aam B T K -Gy U+ Bu)] 0 <k SN

k
;0/0 = xt Ki(zy — Coxy) (3-5)
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A A
Vkil = [AthAI + Qk] b+ CZ+1Bh+lck+1 0 <k <N
A -1 1_1\_l
Vo = [Q_,1  + CIR,IC, (3-6)
/\___1
K, = V,C,R; (3-7)
where

%, & Elx/2Z,, U._)) | (3-8)

Ve & Elx, - %, 0 (x, = 5,02,,0,,} . (3-9)

The first two terms on the right of (3-5) represent the prediction of x,,,,, 4,
based on the estimate Xk of the present state; the last term represents a

correction due to the difference between the actual measurement z and pre-

k+1

dicted measurement Ck(Ak; + Bhuk). Note that Vh is independent of Zh and

k/k
U,; hence, it may be calculated a priori and thus X4 sk is a suitable informa-

tion state for the system.
2. ConTROL

Assumptions (1) and (2) in Part A imply that J* (°k) is quadratic in
the conditional expectation of x, given all measurements and that the control

is a linear function of this conditional expectation:

I'(Zy U k) = 5T Pix, 0+ by (3-10)
u (7, U k) = =Gz, (3-11)

If (3-11) is substituted into the control equation (2.17), then by completion
of squares, iterative equations for P, and b, may be obtained and in addition

G, found as a function of P, and the given quantities (for details see Appen-
dix B).

P = Q + A:Pk+1Ak - AIPk+lBk(B[Pk+lBk + Rk)—lB[Ph#Ak
0 <k <N
Py = Q (3-12)
besy = trlQv, + P,,,,I(A,.V,!A[ ~Veey (A?:.)] + b, 0 <k <N
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by = trlQuV,] (3-13)

G B (3-14)

T -1
(BkPk+1 k * Rlz) B[Pk*']Ak

and where tr [A] of a matrix A means the sum of the diagonal terms.

P and Gh are identical to the matrices resulting from the solution of
the linear, quadratic, deterministic optimal control problem [i.e., from solu-

tion of (2-21) under (3-1) and (3-3)].

3. DuavrriTy

Kalman (ref. 4) was first to notice that, mathematically, control
and estimation are equivalent in the linear case. This equivalence is not
apparent from the results presented above; however, if the estimation problem

1s restated in terms of

A —
P, ¢ E{(x,,, - Jcb“/b)r(xk+1 - xk+1/k)/Zb,Uk}
A
- A VAT +Q, (3-15)
where
Eese1/0 T E{x,,,/2,.U.} ) (3-16)

A
instead of V¥, , we find that the equation for P, is

A

3 A T A p T -1 3
Poii = G T A PA A PG (G PG R TG P AL
0<k <N
A A
P, = Q_, (3-17)
and that
P T BT A oy-1
Kyer = PGy (G P Cyyy + Ry (3-18)

The detailed derivation of these equations is presented in Appendix B.
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If the following identifications are made

T -
Ay Ak
T -
Cr 1 B,

A
Qer — Q

A
Rov — R
o

Veer — P,
~

Ve - Py

T T —
Kk+1Ak+1 G

N - 0 (3-19)

then (3-17) becomes identical with (3-12) and (3-18) becomes 1dentical with
(3-14); therefore, the control and estimation problems are indeed mathematically

equivalent i1n the linear case.

This last derivation is not an idle exercise. Equations (3-6) and (3-7)
require inversion of n X n matrices, where n 1s the order of the system, while
(3-17) and (3-18) require inversion of k X k matrices, where k is the dimension
of the input. Since, in general, k will be less than n, solution of (3-17) and
(3-18) 1s ;impler than solution of (3-6) and (3-7) even though (3-6) and (3-7)

appear to be simpler in form.

We thus see that in the linear case,.control and estimation can be solved
by solving essentially the same equation. The automatic design by computer of
linear control systems based on similar equations for the continuous time case
has been treated quite extensively by Kalman (ref. 14).

4. CosrTs
In Appendix B it ‘is shown that the cost J using optimal control and
estimation 1s given by
_ N

— A
J = xIPx, + er[PQ_ ) + I % (3-20)
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where

A
03, velP,,,Q, + PV, (3-21)

P:+1 2 Q7 Asz+1Ak - P, . (3-22)

Consider (3-20) in greater detail. The first two terms represent the
expected cost due to initial conditions, the third term the cost due to distur-
bances and uncertainty avout the state of the plant. The quantity 4/5, represents
the iucremental cost of operating the system for kth interval because of these
latter effects. From (3-21) it is clear that, ignoring initial conditions, the
cost of operating during the kth increment is the sum of two terms: the first
resulting from the disturbances and the second resulting from uncertainty about

the state of the plant.

Equation (3-21) may be interpreted in an alternative manner as follows:
From (3-12)
- T
Py,, = AIP, , B, (BTP ., B, +E)7'BP, A (3-23)

and by use of the definition of G,

Pr,, = GIBIP, , B, +E,G, (3-24)
and hence
er[Pr,,v,] = er(GT(BIP,, B, + E, )G, V,]
= (RT T c
= e [(BIP,, B, * E,)GV,G]] . (3-25)

The term GthGIis, by the definition of V,, given by

GLVAG: = GkE{(xk - xh/h)T(xk - ;k/h)/zh'uk-l}cz

_ _ 4
E{(kak kak/k)(chxk kak/k) /Zk'Uh-l}

= E{(us, - u))u, —u)"} (3-26)
where
u, £ G‘z:?‘!/‘l = applied control
up 2 G,x, = optimal control given the state
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Thus (3-25) gives the performance cost due to the variation of the applied
control from that which is truly optimal in terms of the actual state of the

system.

C. NON-OPTIMAL PERFORMANCE

In the proceeding part, we have seen how to find the optimal controller
and estimator and how to calculate optimal performance. Suppose, however,
that we want to calculate the performance of a suboptimal system in order to
compare it with the optimal system. In this part, we will show how this may
be done using the optimal theory and we will give analytical results for an

important class of suboptimal controller estimators.

Consider the situation shown in fig. III-2. The operation of this system

is governed by

x’ = (A

Yl - B G )x, *tw, . (3-27)

]

We wish to calculate the performance of such a system assuming a cost func-

tion of the form

- T T
I = thkxh t u, R, u,

x[(Q, + GIR,G)x, . (3-28)

[~~~ 77—/ 7 7/7/7
I + ‘kol xk I
| By " |
| + | .
l ll‘ ‘l*l lk

Ay | _ = o PR g
[ [~
: Gy : zf“u'akeu
L - ]

TA-5237-16

FIG. Ill-2 SUBOPTIMAL CONTROL
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Optimal control theory may be used to calculate the perflormance of the

suboptimal control system ol Fig. 111-2as tollows: Consider Lhe plant, also
showu in fige 1TI1-2 and described by
Xy 7 Ay, ! Bk“k (3-29)
where
Ak = A, - BkGh (3-30)
B, = 0 (3-31)

Find the controller that optimizes the performance when the cost is

~ N ~o o ~o
J = s (xZQkxh + uZRkuk) (3-32)
k=0
where
PO T
Qk = Qe t GkRka
R, = I (3-33)

For the tilded system of fig. III-4 we have

J = 2IPox, (3-34)

where by use of (3-12) and (3-30), (3-37), (3-32) and (3-33)

~ ~ ’\JT’\J ~ ~ "~ ~ ~_ " ~ ~ _ ~No mT
Py = Q@ t AP A - AIPk+lBk(BZPk+IBk tR ) IBIPk+1Ak
= Q *GIRG, + (A4 -BG)'P, (A - BG) . (3-35)

~

cannot affect the plant, it is obvious that the optimum u, is zero;

But since :h
therefore, the performance of this optimal system is identical with the perfor-
mance of the original suboptimal system. Thus, by utilizing the identity be-
tween the systems snown in fig. III-2, it has been possible to derive easily
(3-35) for the suboptimal system and to put it in a format such that the result-

ing performance degradation can be analyzed conveniently. Furthermore, 1f

Proy 5 Qp + AP A P,
- ('TRT T ”
' “kBkPk+1Ak + Akpk+lBk“k
— T (RTp _
GT(BTP, , B, - R, )G, (3-36)
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and if the optimal G, is used, then (3-35) and (3-36) reduce (except for the
tildes on P and P*) to the previously derived equations (3-12) and (3-22).

The same procedure can be applied to calculate the performance of any
suboptimal control system. Of particular interest is a system which has the
same form as the optimal system given in fig. III-1, but for which G, and K,

are not optimal.

To calculate the performance of such a system, we view i1t (in a manner
similar to suboptimal control) as a combined optimization problem in which
there exist no measurements or controls. Since the derivation involves con-
siderable unenlightening algebra, only the result is produced here (with

details relegated to Appendix B).

p— — [ eVl N la~]
J = xTPxy, + tr(P V] + 208 (3-37)
~ ~ A ~ ~ , A . .
A3, = erlP, . Q +P,, ¥V, * 2] PK R -2PK C V] (3-38)

where P, | is defined in Appendix B, and where

Vier = T =K (G DAV ANT - K, 1€ ))T 4 Q, (3-39)
Vo, = Q.

~ A r A .

Q = (I -K ,C ., UI-K  C )OT+K R K

(3-40)

Note that (3-37) is the same as (3-20), the analogous equation for optimal sys-
tems; furthermore, if optimum control is used, but not necessarily optimum

estimation, P;+1 is zero and (3-38) reduces to (3-21).

The last two terms of (3-38) may be rewritten

A ~ A ~
er [2K[P K R,~ 2P,K,C,V,] = tr[2PK, (RK, - CV,)) (3-41)
A ~ . .
For optimum estimation the term (RkKk - Cth) is zero; hence (3-21) is valid

if either optimum estimation or optimum control, but not necessarily both, 1is
used. In any case, (3-37) and (3-38) together with (3-35), (3-36), (3-39), and
(3-40), provide a method of calculating the performance of any combined con-

troller estimator of the form given in fig. III-1.
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IV INFORMATION AND CONTROL

The purpose of this section is to show how combined optimization theory can
be applied to answer various practical questions about control systems. A brief
summary of the purpose of feedback control is given, followed by a linear ex-

ample, whichillustrates the application of combined optimization.

A. UNCERTAINTY AND CONTROL SYSTEMS

To see how the framework of the combined optimization problem may be used
to investigate the effect of sensors on control system performance, wewill take
a brief look at the philosophy behind control systems. Feldbaum (ref. 9)
presents an excellent summary of this philosophy in his first paper on dual

control. Many of the concepts discussed here were inspired by that paper.

1. FeepBack ‘CONTROL

If we knew the exact state of the system and 1f we knew all future inputs.
we could specify the control to be applied to the system as a time function:
that is, we could use open-loop control. But, in general, the initial state of
the system is unknown a priori; furthermore the plant may be subject to unknown
disturbances; and finally, the plant parameters may be partially unknown and
varying. Note that 1f such parameters are considered as state variables, this
last source 6f uncertainty 1s equivalent to the first two. Since sufficient
a priori knowledge about the state of the plant is seldom available, some mea-
surements must be made on the plant in real time to gain information. Thus,
the need for feedback control is a result of the lack of a priori information

about the state of the plant.-

In a feedback control system, several methods exist for improving the
knowledge of the state of the plant. Naturally some sensors must be used to
make measurements on the plant, but due to sensor defects it will not in general
be possible to determine the state exactly from these measurements. In Sec. II,
estimation was defined as the determination of the conditional probability
density of the state. The processing of the raw data to produce a reasonable
estimate of the state is usually referred to as filtering. In addition to this

straightforward approach, we also have the possibility of using control action



to improve the estimate (i.e., make the conditional probabilivy distribution

narrower). The concept of using control to improve cstimation 1is Feldbaum’s
dual control (refs. 8 and 9), and is considered further in Sec. V.

2. INFORMATION GATHERING AND PROCESSING

As mentioned before, the estimate of the state of the plant produced—
etther explicitly or implicitly—in any feedback control system will not he
exact because of sensor 1mperfections. Furthermore, as a result of computa-
tional approximations, the estimate will not usually be as good as attainable
for the given measurements. A cost will be assocrated with 1mproving the esti-
mate of the state. Removing sensor 1mperfections 1s costly and the use of
complicated filtering and dual-control schemes may be even more costly. How-

ever, we know from experience that adequate control systems can be designed
without using the best possible sensors along with the exact optimal control

and estimation schemes; hence, there are two questions we would like to answer:

(1) Which state variables should be measured and how well?

(2) How complicated need the controller estimator be?

3. VALUE AND UNCERTAINTY

Intuitively, the answer to the two questions posed above depends upon the
amount of @ priori uncertainty present and the value of reducing that uncer-

tainty in the following manner:

(1) The less the uncertainty about the plant costs in degraded
performance, the more the uncertainty may be tolerated.

(2) The more a priori information present about the plant, the
less information need be gathered.

Several possible mathematical approaches exist to answer the questions
given in Part B. Information theory is the quantitative study of uncertainty.
Unfortunately, information theory does not tell us much about how difficult it
is to get information or how useful this information will be in terms of re-
ducing operating cost once we have it. Hence, information theory by itself
will not solve the whole problem, although it may be useful 1n considering

some aspects.

Ideally, one would like to put the cost of estimation into the performance
index and then compute the optimum system, taking into account the cost of

sensors and of computing. Most performance indices do not include such costs
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for the simple reason that i1t i1s not clear mathematically how to include them,
and it 1s possible that, if they could be included, the problem would be un-
solvable. Even if solvable, such a formulation would not give the true optimum

since 1t does not include the cost of design.

The approach we will take i1s to consider the solution of the combined op-
timization problem ignoring the cost of sensing and computing. In simple cases,
this will provide quantitative answers about what perforﬁance can be expected
from sensors of a given quality. 1In more complex cases the formulation will

indicate reasonable approximations.

In the linear case, the importance of both value and uncertainty stand out

clearly in the second term of AB, in (3-21)

*

ee (P, V1 (4-1)

1f P:+l is large (i.e., if the value of information is high) or if the

a priori uncertainty about the state 1s large, then it is profitable to use
very good sensors 1n an attempt to improve performance. On the other hand, if
P:+1 1s small and the a priori variance of the state is small, the use of ver:
good sensors will not improve performance significantly. In the next section.

some examples are presented to 1llustrate this fact and to demonstrate how the
general theory of Sec. Il may be used to answer the questions posed 1in
Sec. IV 2.

B. EXAMPLES

In this part, we apply the concepts developed in the previous section to
some 1llustrative examples. The examples considered are all linear: however.
since the solution of the combined optimization problem for the non-linear case
can be used to treat similar and more general nonlinear situations, the results
serve not only to show the application of the combined optimization in the

linear case, but to 1ndicate its usefulness in the general case.

In keeping with previous work, the discrete time case 1s treated. However,
entirely analogous results can be obtained for the continuous time case, either
directly or by use of limiting arguments on the discrete time case. The con-
tinuous time case 1s extremely important in the linear situation, since 1t 1is
practical to build linear, continuous-time controllers; in nonlinear situations,
however, it is likely that digital controllers will be required, and hence con-

tinuous time results are less important in these situations.
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FIG. IV-1 DISCRETIZED POSITION SERVO

The symbol Z~! stands for a unit delay in accordance with customary notation

We consider the problem of controlling a plant (see fig.IV-1) described by

x = Ax, t Bu, * w (4-2)

k+1 k

1 0.1 0.0052
A = B = (4-3)
0 0.9 0.1

This plant is just the discretized version of the simple position controller

with

illustrated in fig.IV-2. We wish to minimize the, cost
293
J = > (xlQx, + ulRu,) (4-4)
k=0
where
1 0
Q - R = [0} (4-5)
0 0.1

The problem 1s considered for alternative measurement systems:

z, = x, t v (4-6)

32



with statistics

A .
Q - E(wbe) (4-7)
A T
R = E(vbvk) . (4-8)
v(!)(') .
"_/‘\
@+ Az(Z)m
'( )(') v“)(ﬂ
(2) ()
{ x (1) n (1) 0-_/‘\ + o
A U N e
]

TA-5237-18

FIG. 1IV-2 POSITION SERVO

We will assume that the system operates forever; hence, to find the

optimal control, we must find the steady-state value of P by solving

P = M+ ATPA - ATPB(BTPB) 'BPA ) (4-9)
The solution 1s
4 0.16
P = ) (4-10)
0.16 0.1
Also, we have
G = (BTPB™Y)BPA = [27 10.5) (4-11)
. 1 0.38
P" = M+ ATPA-P = ) (1-12)
0.38 0.15

To find the optimum estimator, we must solve the variance equation for

,+ Knowing V., AB, can be found by solving (3-21). The results of such
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A A
calculations for several different C, Q, and R are given in table [V-1., It is

assumed that the system has been operating indefinitely so that steady-state

values of Vk are found.

Now consider these examples in more detail. Suppose that originally we try
to control the pianu usiny the measurement system of Case 1 and that the per-
formance attained is inadequate. Several possible methods exist for improving

“insulated”

performance. A rate sensor may be added (Case 2), the system may be
to reduce the level of rate disturbance (Case 3) or the position sensor may be

made more accurate (Case 4).

Table 1V-1
EXAMPLES
A A T M7 . ]
cNAoss A 0 v er [Po) [er [P'V] | 8
[ 1 o] [0.1 0 [0.38 0.45] 0.5 1.24 |[1.74 |
1 0 o 0 1J|lo.45 0.35
9 [1 0] 0.1 0 [0.23 0.02] 0.5 0.38 0.88
01 0 1)}loio2 0.6
3 [1 0] [0.1 0] I’g.29 0.09] 0.41 0.42 |0.83
0 o 0 0.1 .09 0.48
s [0.1 0] [0.1 o] [0.07 0.12] 0.5 0.60 1.10
0 o 0 1dllp.12 3.0

Comparing Case 3 with Case 4, we see that to a certain extent a priori
information (gained by reducing disturbance inputs) can be traded off with
measured information (gained by using more accurate sensors). We also see from
comparison of Case 2 and Case 4 that we can find trade-offs between the methods
of gathering more information; for example, we may add sensors or we may make
the present sensor more accurate. In any case, it is clear that by use of
combined optimization theory, we can investigate alternative sensing systems
for obtaining the same performance. Combined optimization provides a ““figure
of merit” for comparing sensing systems, the standard for comparison being

the optimum performance.

Consider now the possibility of simplifying the system by using a sub-
optimal controller estimator. This may be accomplished in two ways: simpli-
fication of the time variation of the controller estimator or reduction of the
number of dynamics in the controller estimator. We treat the latter possi-

bility first.
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IIIVi

In Case 4, the mean square error Vll of 0.07 in the position 1:1’ with the
optimal estimator* is not much smaller than the mean square error of 0.1, which
would result from using the unfiltered output of the position sensor as an esti-
mate, This observation suggests that the state variable of the estimator asso-

ciated with xtl)

might be eliminated without degrading performance significantly,
Such a procedure amounts to replacing the Kalman filter, which is the optimal
estimator by a Luenberger observer (ref. 15). The equations governing the

optimal estimator for Case 4 are

A1) - 0.31128(1) + 0.0311%(% - 0.689z{1) + 0.00162u, (4-13)
22) = -1.162{1) + 0.7842{%) + 1.16z{}) + 0.094u, . (4-14)
If we set
A
LT

the remaining equation becomes
= 0.784x(%2) - 1.16z{') + 1.162z{}) + 0.094u, . (4-15)

Hence, for this suboptimal estimator

0 0
(I - KC)A = (4-16)
-1.16 0.784
and
1 ~ -1 0.116
K[]Q[ ] (4-17)
1.16 0.116 1.27
Note that, to delete the state variable associated with xél), we must
define
y, = V) -1.48z, (4-18)
which obeys
Yes1 = 0.748y, — 0.32z,,, * 0.09%4u, . (4-19)
* Superscripts in parentheses are used to indicate components of vectors.
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In terms of this new state variable, the suboptimum estimator is first

ovder.  Both the optimal and this suboptimal estimator are shown in lig. V-3,
By use of the theory presented in See. 111-C and in particular (3-38) and
(3-39), we obtain
- 0.1 0.12
Vo= (4-20)"
0.12 3.1
and
h “a.
N3 = POA PV = 0.5+ 0.64 = 1.14 . (4-21)
These results compare with
0.07 0.12
V = AB = 1.10 ) (4-22)
0.12 3.0
A
which were previously obtained for optimal estimation. Note that V for the

suboptimal estimator is not much different from V for the optimal estimator;
furthermore, the cost associated with using the suboptimal estimator is in-

creased only slightly from 1.10 to 1.14.

If, in Case 3, the optimal estimator is replaced by a Luenberger observer,

as was done for Case 4, we get

1 0.453
vV = : (4-23)
0.453 0.67
AB = 0.41 + 1.45 = 1.86 (4-24)
as compared to
0.29 0.12
V =
0.12 0.48
A3 = 0.83 (4-25)
for the optimal estimator.
In this case, there is a significant degradation in performance. Thus,

while gaining a priori information (by reducing disturbances) may allow im-
proved performance for a given sensing system, to achieve this improved per-

formance may require an optimal estimator.
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We now turn our attention [rom the steady-state Lo transient performunce

and give examples in which a priori information or measured information may
simplify the controller estimator by approximating its time variation. |n
general, the optimum estimator, which is a Kalman [ilter, is time varying. We
would like to know under what conditions the Kalman filier may be replaced by
its steady-state limit which, for stationary plants and noise, is the Wiener
filter.

The Wiener and Kalman filters are identical, if the initial uncertainty
about the state, as measured by its variance, is the same as the steady-state
uncertainty. In this situation, we start in steady-state operation. Since it
is reasonable to assume that the a priori uncertainty is at least as great as
the steady-state uncertainty, this situation provides one example where apriori
information simplifies time variation of the optimal system from what would be

optimum if little @ priori information about the initial state existed.

Table IV-II presents the results of replacing the Kalman filter, which is
optimal, with the Wiener filter, which is suboptimal, for Cases 1 and 4 with an

a priori uncertainty about the state given by

1 0
v = (4-26)
0 10

Notice that the percentage degradation is somewhat worse in Case 4, the
case with the better position sensor. This result may be explained by the fact
that in Case 1 the optimal estimator gain K changes only from [0.5 0] initially
to [0.376 0.453] for steady-state, whereas for Case 2 the optimal K changes
from [0.9 0] to [0.69 1.16].

Thus, Case 4 presents an example where the use of better measurements im-
proves performance, but where the optimal estimator is required to get the full
improvement. However, in both examples, the cost from using the Weiner filter
is minor. Needless to say, as time of operation increases, the effect of

initial non-optimability becomes less significant.
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TRANSIENT RESPONSE V -

Table

V-2

[l ()‘J
0 10

CASE 1 CASE 4
k
Optimal Suboptimal Optimal Suboptimal
1 2.50 2.52 2.09 2.14
2 2.60 2.63 1.79 2.09
3 2.53 2.60 1.46 1.77
4 2.35 2.47 1.28 1.48
5 2.17 2.28 1.19 1.29
qﬁk 6 2.02 2.12 1.15 1.20
7 1.92 1.99 1.12 1.15
8 1.85 1.89 1.11 1.13
9 1.81 1.82 1.11 1.12
10 1.78 1.78 1.11 1.11
2| 21.s3 22.10 13.41 14.48
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V. GENERAL CASE

In this section, the solution of the combined optimization problem in the
general case is considered. Dual control, i.e., the possibility of using con-
trol action to gain information, now arises. A simple example is presented to
illustrate both the concept of dual control and the nature of the computations
involved in solving the nonlinear case. Finally, we discuss some possible ap-
proximation techniques to get a practically feasible solution of the combined

optimization problem.

A. DUAL-CONTROL THEORY

It is intuitively reasonable to expect that test signals may be used to
gain information about a plant. Therefore, in the control of a plant with im-
perfect knowledge of its state, the input serves two purposes: as a control
signal, to drive the plant toward i1ts desired state and, as a test signal, to
gain information about the state of the plant. We would not expect in general
that the input which provides the most information would be identical with the
input which 1is optimum from a control standpoint. The problem of trading off

these two uses of an input is known as the dual-control problem (refs. 8, 9).

In his papers on dual control (refs. 8, 9) Feldbaum considers a situation
similar to that of this memorandum. However, he assumes that the disturbance

and noise input probability distributions contain unknown parameters.

It 1s clear that the problem considered here is a special case of
Feldbaum’s problem, since the distribution p(x,), p(w,), p(v,) are assumed
known. On the other hand, if the state of the plant is augmented to include
the unknown parameters, Feldbaum'’s problem becomes a special case of the com-
bined optimization problem. Thus the two probléms are slightly different for-
mulations of the same basic problem. The approach to adaptive control, 1n
which the unknowns are treated as parameters, appears to be more systematic.
Furthermore the use of a recursion relation to calculate conditional probabil-

ities is a significant improvement over the method used by Feldbaum.

Mathematically, these concepts can be illustrated as follows: Let
I(xk,k) be the performance of a plant when controlled optimally, and using

exact knowledge of the state. Then it is reasonable to define the input uf,

41



which is optimal from the control point of view, as
ul(Y,) = argpin EA LG u k) + H(x, ok 4 1)/Y g (5-1)

where argmin F(u) is that value of u which minimizes F and where Y, is the in-
formation state as defined in Part II-C-2. On the other hand, if Ulu,, Y, k) is

the expected uncertainty about x,,, when the input u, is applied, then the in-

k
put which is optimal from an information point of view is given by

ul(Y,) = argpin Ulu,, ¥, k) . (5-2)

In general

ul(Y,) 4 ul(Y,) . (5-3)

Since i1mprovement in information about the plant may allow us to make bet-

ter control choices in the future, the input uf which is truly optimal, will

I C
k k-’

control through the recursion relation derived by dynamic programming, and

be a compromise between u; and u Combined optimization, which includes both
estimation through the recursion relation derived by use of Bayes’ rule, will
provide that input which constitutes the optimal trade-off between the control

and informational aspects.

We have not yet defined the function U, which is used to measure the ex-
pected uncerta}nty. One possibility is to use the entropy H(x,,Y,,k) of the

conditional probability distribution and to define U as

Ulu,,Y,, k) = E{H(x,, ,Y,, ,k + 1)/Y,ul} (5-4)
where
Hx,, Y, k) = [ p(x,/Y)log p(x,/Y )dx, . (5-5)
Tk
A second possibility 1s to define
Ulu,,Y, k) = E{IT(Y,,,,k+1) - I(x,, .,k + 1)/Y,,u,} (5-6)

. . . .
where I 1s the minimum cost in the case of incomplete knowledge about the

state. If there is no uncertainty about the state, then U(uk,Yk,k) reduces to

I

zero for both definitions of U; furthermore, if u! = u® for the u defined in
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(5.5), then u® is the optimal input, since

(Y, k) min E{0L(x, u, k) + I'(Y, b+ D1/Y, 0}

min (ECLLGey uy k) + TGeyy ik + DI/Yu) + Utuy, ¥, 0k))

(5-7)

This property does not necessarily hold for expected entropy. On the other

hand, the entropy can be calculated without solving the combined optimization

problem. This is significant, since we wish to calculate u{ and uf as an aid
to solving the combined problem.
For a linear system
N
Ulu,,Y, . k) = 2 tr(P’v ) (5-8)
1=kt ] i

is independent of u,, which affects only the conditional mean of x for 1 > k.

Thus, in the linear case, the optimum control ufis uf. We will now present a

Cc

simple example in which u? ‘-

, does not equal u

B. AN EXAMPLE

Since we are forced to consider a nonlinear example to i1llustrate dual
control, we will consider discrete state systems (i.e., systems which at any
time are in one of a finite number of discrete states). In such systems, the
conditional probability density consists of impulses at the various states.
This density can be replaced by a probability vector giving the conditional
probabilities that the system is in a given state, The formulation given in
Sec. Il is still valid except that summations replace integrations in the
appropriate places. The discrete state case has also been considered by Astrom
(ref. 16) who presents other examples. The advantage of discrete state systems
is that the probability vector is a nongrowing finite dimensional information

state.

Consider a plant with two states (0 and 1) and two inputs (0 and 1) and

whose state equation 1is

x,, = %, @ u, (5-9)
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where @ is the exclusive OR function described in table V-1. Note that a zero

input leaves the state of the plant unchanged; a unity inpul changes the state
to the other state.

Table V-1

LOGIC FUNCTIONS

x, k 0 1 x, k 0 1
e 0 0o | 1 z, =4 o0 o | o
1 1 0 1 0 1

Exclusive OR AND

The measurement systems is given by

r Vs , (5-10)

where + is the logical ‘““AND’’ function shown in Table V-1, and where
Pr(v, = 1) = a . (5-11)

In this example, the conditional probability distribution can be described by

two numbers: the conditional probability that x, is zero and the conditional

probability that x, is one. Since these two numbers must add up to one, a suit-

able information state 1s

wb

P, Pr(xh = l/zk'Uh—l) . (5-12)

The recursion relation for p, obtained from the estimation equation (2-27)

takes the form (5-13). The calculations may be divided into three cases:

Py © Pr(x“1 =1/zk+1,...,zo,uk,...,u0)

Pr(z,, /%, =DPrix,,, =1/z, =1,u)p, +Pr(x,,, =1/x, =0,u,)(1-p,)

Pr(zhﬂ/x’t+1 =1)|:Pr(7c‘l+1 =1/xh =1,uk)pk +Pr(:r,h+1 =1/x, =0,u,)(1 - pk)]

+Pr(z, /%4 =0V [Prix, , =0/x, =1,u,)p, +Pr(x,, =0/x, =0,u,)(1-p,)]

(5-13)
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Ifu, = 0, 2,4, 0, then

Pr (z,,,/x,,, = 1) = (v, =0) =1-a (5-14)
Pr (x,,, = 1/x, = 1,u,) = 1 (5-15)
Pro(x,,, = 0/x, = Liuy,) = 0 (5-16)
Pr (x,,, = 1/x, = 0,u,) = 0 (5-17)
Prx,,, =0/x, = 0,u,) = 1 (5-18)
Pr(z,,,/%4; =0) =1 ; (5-19)
hence,
(1-af1-p, +0+ (1-p)l
Prvi " -l op, 0 (L-pal +100-p, +1 - (L-p,)]
(1 = a)p, (1 - a)p,

T (l-ap, *(-p)  1-ap, (5-20)

If u =1, z,,, = 0, then by similar calculations (or by symmetry)

(1 - a)(1 - p,)
= . -21
P+ 1 - a(l -p,) (5-21)

Finally, by inspection of 5-10 and table V-1; if z,,, = 1, then

Pesr = 1 . (5-22)

Note that, if the output is ever 1, then we have perfect knowledge of the state

of the system,

Now we proceed to calculate the expected entropy at time k + 1 for u, = 0
and for u, = 1. If u, = 0 and z,,, = 0 then
“HCxy 4 Py k) = pyay log pyay (17 pyyy) log (1 - pyyy)
(1 - a)p, (1 - a)p, (1 =p,) (1 - p,)
= ——— log + log

1= ap, 1 - ap, 1 - ap, 1 - ap,

(5-23)
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If u, = 0 and 2, ,, =1

H(xk+l’ph+l'k) =0 . (5'24)

Therefore, if u, = 0, U may be found by multiplying the right side of (5-22) by

k
the Pr (z,,, = 0/u, = 0,p,), which is (1 - ap,):

~U(o,p,,k) = (1~ a)p, log (1 —a)p, + (L ~p,) log (1 -p,) - (1 -ap,) log (1 - ap,)
(5-25)

By symmetry,6 we have
-U(l,p,, k) = =-Ulo,1 = p,,k)
= (1 -a)(l -p,) log (1 ~a)(l ~p,) +p, log p,
= [1-a@ ~-p)] log [1 - a(l - p,)) . (5-26)
In fig. V-1 U(O,ph,k) and U(l,p,,k) are plotted for a = 1/2. Note that
for p, < 1/2.
U(0,p,, k) < Ul,p, k) (5-27)

and vice versa for p, > 1/2; therefore

ul = 0 Py <

-y
(CE IR R e

= 1 P, ” (5-28)
This relation holds for any 0 < a < 1. For the boundary cases of no measurement
(a = 0) and perfect measurement (a = 1), we find U(O,p,,k) = U(l,p,,k). In

fig. V-1, the entropy H(p,,k) is also plotted; note that the expected entropy

at the next state is less than the present entropy for both controls. Again
this relationship holds for any 0 < @ < 1, with the three curves coinciding

for a = 0 and a = 1.

If our desire 1is to have the system i1n state zero, then i1t is reasonable

to pick

s
LS

i
o
g~
-

A
N =

(5-29)

&=
Ll
1
—
-]
-
Vv
0o |
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FIG. V-1 EXPECTED ENTROPY

Comparing (5-28) and (5-29), we see that in this situation uf = uf and the

problem of dual control does not exist. On the other hand, if our desire is

to have the system 1in state one, then

c
Ue

1
ul = 0 Pe > 5 - (5-30)

In this situation uf # uf; therefore, we would expect that there exist cost

I

p 1S used rather than uf.

functions and information states p, for which u
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To illustrate these situations, we will set e equal to 1/2 and N equal

to 2 and find the optimal policy

is 1 for £ < N and 10 for k& = N.

state 1s zero. For this case th

Lea,,x,

The optimal policy is found
*
I'(p,,2)

The choice of u, is arbitra

application of the control equat

when the cost of being in the undesired state
Consider first the case where the desired

e cost 1s

s k) < 2

Xy

10x, k (5-31)

by applying the control equation (2-31).

= min E{10x,} = 10p, (5-32)
“2
ry: a reasonable choice is ug = u® A second

ion yields

I'(p,,1) = min E{x, + 10p,/p,,u,}
Y1
= p, *+ 10 min E{p,/p,,u,} (5-33)
¥
Making use of (5-19), and (5-20), and (5-21), we find
(1 - a)p,
E{PZ/PI.UI =0} = —I——————- Pr (z, = O/pl,u1 = Q) + Pr (z, = l/pl,u1 = 0)
- ap,
(1 - alp,
= (1 —ap,) tap, = p (5-34)
Elp,/pyouy = 1} = 1-p (5-35)
Therefore the optimal input u?
0 < L
u = -
1 Py 2
1
and
* 1
I (Pl;l) = 11P1 p]. <E
1
= p;, t+10(1 - p;) p; > '5 (5-37)
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Table V- 2 presents the results of completing the calculations of the

optimal policy in a similar manner. Notice that in all cases

uy = ul = uf : (5-38)

Table .V-2

OPTIMAL POLICY FOR DESIRED STATE ¢

k 0 1 2

0 pg< ! 0 p, < ! 0 py < !
0 2 2 2
“ Py 1 1 1

1 py” 0 1 p” 9 1 py? )

1 1

Tpg.pg < ) Up,,p; <

I (p, . k) . 10p,
pg * 6(1 - pglipy ” 0 pg = 10(1 - p},p, *

These results are

Now consider

Again the control

presented graphically in fig. V-2,

the case where the desired state is one; in this case

L(x,,u,,k) = (1 @ x,) k< 2

10(1 @ z,) k=2 (5-39)

equation is used to find the optimal policy, which is given

in table V- 3 As an example of these calculations, consider k = 0.
I'(pg,0) = min E{[(1 + xg) + I'(p;,1))/pg uyl
o
= 1= py +min E{I"(p,,1)/pg,ue} . (5-40)
“o
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Table V=3

OPTIMAL POLICY FOR DESIRED STATE ONE

k 0 X .
1 py <—
0 1 . <1 <1
0 1< <1 . 2 1P 2
7 Po
uf(pk)
1 L. <6
2 P05
0 >l >1
P17 5% 0 Py 5
6 £<
7 Po
1
1 +10py py ;
1 9 <1
+ 9p,, —_
2 +3 1. 1 PP
+ — —
" P o 7 Py 2 1001 - P2)
(p,,k)
" 6 5 l< <6
Po 5 Poy 1
11(1L = p]),p1>;
121 - pg)  T< pg
Since for u, = 0 and z, = 0, p1<1/2 if p0<1/3' we have from (5-10) and
(5-22):
1
- by ) )
*
E{I (pl;l)/Po;uo = 0} = 1 +9 2 T (1 -Ep()) + 0 _Z_po
1-——
2 Po
2
= 1-‘,-4'P0 < -
1 Po 3
g Po 1
= 11 - 11 1 - =p,
1 2
1_ po
= 11(1 ~ p,) Py >

(5-41)
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By svmmetry

E(I"(p, 1) /pgoug = L} = 11p, po <

1

Wil W

5 - 4p, Py ~ (5-42)

These two functions are plotted in fig. V-3, from which it is obvious that

there exists a region about the origin in which ul is applied rather than u®.
In fact
1 < =
u = P =
4 1 0
| l 7
uzl 0 = 0 1 < p, < 1
— N 7 2
. 1 < < 6
= - P -
™p k) 2 |— —J 2 °© 7
8«
= 0 7 < Po (5-43)
The explanation for these results 1s simple.
o} | | Because there 1s a very high cost for being
0 2 Y |

in the wrong state at Time 2, it 1s important
Ta-5237-22 that the proper input 1s used at Time 1.

Therefore, 1f at Time 0 the uncertainty is

FIG. V-3 CALCULATION OF

MINIMUM large (p, 1is near 1/2) then it pays to use

the control that reduces this uncertainty

most.

Figure V-4 presents these results graphically with the scale reversed for
easy comparison with fig. V-2. Such comparison indicates that in general,

when u® # ul, we can expect a higher cost than when u® = ul.

Based upon this example, we can conclude that there exist cases where the
input that provides most information differs from the input that is optimal
from an 1mmediate control point of view. In these cases, the optimal policy
1s a compromise between gaining information and bringing the plant to its
desired state. In general when such a compromise must be made, the cost is

higher than for analogous cases where the compromise is not necessary.
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C. APPROXIMATIONS

To solve the two recursion relations (2-17) and (2-26) for the combined
optimization, a digital computer will usually pe required in the nonlinear
case, in which case the variables will have to be quantized. To get some idea
of the computational difficulty involved in performing the minimization to
solve the control equation (2-17), consider a system with one input, one out-

put, and three state variables, with each variable quantizZed into ten levels.

I[f we choose to specify the control as a function of the previous inputs
and outputs, then at time k = 15 we must select one of ten levels for each of

the 10'% 10'®% = 10%! values of the argument,

On the other hand, suppose we choose to specify the control as a function
of the probability agensity. At a given time, the system may be in any one of
10° states. Now suppose the probabilities are quantized into eleven uniform
levels between 0 and 1. Since the total probability must be 1, there are ten
lumps of probability 0.1, each lump of which can be assigned to one of the 10°
states. Therefore, there are (10°)°/9! = 102!*% different possible probabil-

ity distributions.,

Thus, we have come up against the “curse of dimensionality’, which plagues
all numerical optimizations (ref. 17). Even if the states are exactly measur-
able, we must specify a control for each of 10° possible states; but 1in the
combined problem, we appear to be cursed twice. Because of the obvious impos-
sibility of calculating exact solutions, approximate techniques must be found.
Two broad possibilities exist: to divide the problem into several smaller
problems (i.e., to partition the states), or to reduce the number of state

variables used 1n computation.

If we base the controls on the previous outputs and inputs, a reasonable
approach is to use only the past few outputs and inputs. In the above example,
i1f we restrict our computations to the past three time increments, the number

of arguments for which a control must be calculated is 10% - 102 x 106,

A reasonable approximation to control based upon the conditional probabil-
ity distribution is control based upon the first few moments of this distribu-
tion. If the control is based on the conditional mean, then there are only
10 arguments for which controls must be calculated at each time in our
example. However, the conditional mean contains no information about the
uncertainty; thus, we would not expect the dual-control aspect to arise for
this approximation; The conditional variance contains information about the

uncertainty; 1n our example, use of conditional mean and variance yields

4



103 + 10% = 10° arguments. Conditional entropy is a measure of uncertainty
which may be easily calculated from the conditional probabilities; with the
conditional mean and uncertainty, we have 10%® + 10 = 10* arguments for the

example.

D. BOUNDS ON PERFORMANCE

Upper and lower bounds upon the minimum cost in a given combined optimiza-
tion problem may be calculated by solving related but simpler combined problems.
For the given plant and disturbances, if J, ;, 1s the minimum cost with a per-
fect measurement system, Jg, is the minimum cost with no measurement system,
and J the cost with the actual measurement system then

< < )
Jnin —J —JOL * (5‘43)
These inequalities hold because the smaller member of each relation is obtained
when information disregarded by the larger member is used; use of additional
information optimally cannot degrade performance. (Of course, nonoptimal use

of additional information may degrade performance),
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VI CONCLUSIONS

The combined optimization problem—the problem of controlling a randomly
disturbed plant on the basis of incomplete knowledge of the state of the plant—
requires the solution of two iterative equations: the estimation equation which
updates the conditional probability density of the state of the plant and the

control equation which yields the optimal input as a function of this density.

A complete solution to the combined optimization problem exists 1f the
system is linear, if the costs are quadratic, and if the random disturbances
are Gaussian. In this case, the solution of the control and estimation equations
reduces to finding two matrices by solving dual matrix difference equations. Op-
timum estimation reduces to the calculation of the conditional mean of the state,
and optimum control is a linear function of this conditional mean. The cost 1is
the sum of two parts: a transient cost due to initial conditions and an oper-
ating cost. The cost AB, of operating for kth time interval further breaks down
to the sum of a cost due to disturbances and a cost due to uncertainty about the

state:

A *
A8, = tr [PQ + P'V] (6-1)

A
where Q is the covariance matrix of the disturbance, V is the covariance matrix
. * . . .
of the estimator error and P and P are matrices found in solution of the control

equation.

Because it provides the optimal method of using information gathered by
sensors and because i1t gives the optimal expected performance; the combined
optimization problem is a natural framework for considering a variety of impor-
tant control problems—in particular the problem of determining the effects of
information-handling components on system performance. Feedback control is
necessary because of incomplete a priori knowledge about the state of the plant.
Since reduction of such uncertainty by means of measurement, filtering, and con-
trol action is not without cost, it is desirable to determine how complicated
information gathering and processing must be for adequate control. Combined
optimization theory considers both the difficulty of gathering information and
the value, in terms of improved performance, of the information gathered; it

therefore provides a standard for comparing alternative systems.
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. * . .
In the linear case P tells which state variables need to be known accu-
rately and P indicates which state variables are most sensitive to disturbances.
Furthermore the optimum estimator for thiscase, the Kalman filter, is no more

complex than the plant to be controlled.

The general nonlinear combined optimization problem is considerably more
complicated than the linear case because of the necessity to compromise the
control action between the purposes of gaining information and taking the plant
to a desired state. Exact solution of the problem in all but simple cases is

impossible because of the extremely large dimension of the problem.

Suitable :approximations can sometimes reduce the effective dimension of a
combined optimization problem to the dimension of the corresponding optimal
control problem in which the state 1s assumed to be exactly measurable. Research
on these suitable approximations 1is an important task which should be taken in

the immediate future because exorcizing the demon behind the “curse of
dimensionality’ is necessary 1f practical realization not only of combined
optimal schemes, but even of classical optimal control schemes, are to be

found for systems of large dimension.
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APPENDIX A

IDENTITY INVOLVING EXPECTATION

Suppose that we wish to find the expected value of some function F(x) of
the random variable x and that y is a second random variable. Then the follow -

ing identity holds (ref. 18):

E{F(x)} = E{E{F(x)/y}}

x y x (A-1)

If the necessary probability distributions exist, this relation may be proved

as follows:

E{F(x)} = [ F(x)p(x)dx . (A-2)
x
But
p(x) = [ p(x,y)dy (A-3)
y
and from Bayes's rule
plx,y) = plx/y)p(y) . (A-4)

Substitution of (A-3) and (A-4) 1in (A-2) yields
E{F(x)} = [ F(x) [ p(x/y)p(y)dyds . (A-5)
x

Finally, on interchange of integrations

E{F(x)}

x

J, §, F()p (x/y)dxp (y)dy

w

€{€{F(1)/y}} (A-6)

Q.E.D.
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APPENDIX B

LINEAR CASE

1. LINEAR CONTROL

Suppose assumptions 1 and 2 given in Sec. III-A are true. Then

I"(Zy, Uy M) = min E{(xjQyzy * ugRyu,)/Zy. Uy} (B-1)

N

N-1’

We digress for a moment to evaluate E(x7Qx), where Q is any symmetric

n X n matrix:

xTQz = > > x,Q;,x; . (B-2)
i=1 j=1 1
Hence
ExTQx} = = = Q. .E{x,x.} ., (B-3)
i=1 j=1 Y v
but
E{xi,xj} = E{xi}E{xj} + El(x, - E{xi})(xj - E{xj})] ; (B-4)
therefore, 1f
x 2 E{x}
A - _
V = E{(x ~ x)(x — )T} , (B-5)
(B-4) becomes
E{xTQx} = xTQx+ = = Q..
=1 =1
= xTQx + tr [QV] (B-6)
where tr [A] stands for trace of A (i.e., sum of diagonal terms).
Making use of (B-6), we may rewrite (B-1) as
L _ . -7 - T .
I(,N) = ﬂ}n {xN/NQNIN/N + tr [QNVN] + uNRNuﬁ} ; (B-7)
N
where ;k/h and V, are as defined by (3-8) and (3-9).
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It is obvious that u, = Q and

I'(Zy Uy N) = x40 Quxy,p + 87 [RV,] (B-8)

N-1°

. * . .. =
Since I (°*,N) 1s quadratic 1in XyN

quadratic, I(-',k) will be quadratic in ;h/h. Hence, we may write

and since the system is linear and cost

I'(Z, Uy_ k) = xp, PLx, 0 * b, (B-9)

where from (B-8)
Py = Q ) (B-10)
by = vur {Q,V,] ) {B-11)

When (B-9) is substituted in recursion relation (2-17):

_ — _ r _ _
"I/:.P;.xn/h tb, = mu“‘ E{ [kukxk + "ZRh”k + II+1/k+1PIz+lxh+1/k+1 + bh+1]/zh’ui-1}
* (B-12)
But from (B-6),

/ T
EGl Pt Zs U = ByinPeniB e 7 er PyyVind (B-13)
and from (A-6), (3-1), and (3-4b)

E (BT Pyt /2y U3 /2,0 = E(xf s 1Py Bin1 /20 Uy
Tr+l

= Ayr t Bhuh)TPHl(Akxh/h + B,u,).

A
+tr [P, (AVAT Q)] . (B-14)
Therefore,
_ _ _ r _
E{x[+1/k+1Pk+1xh+1/k+1/Zk’Uk} = (Ayx, 4 T Buyy) Pk+1(Aka/h + Bu,
T - A
totr [Pk+1(AthAh Ve T Qh)] (B-15)
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Finally substitution of (B-15) into (B-12) yields

T - S o - T
xk/kkak/k tb, = T}n (xk/kaxk/k + tr UQka] tu Ru,
k

+ (Akxk/k + Bhuk)TPk+l(Ah;;/k + Bouy)
A
* o [P (VAT -V, Q) * B, /Z,.0,)

If the square on u, 1s completed, (B-16) reduces to

—T - _ . T T
o aPex e T by = min Q"k PG xy o) (ByPyy By f R (vt Guxy )

-7 T T, pT -
* xk/k—l[Qk t AP A, Y G(BP, B, Rk)ck]xk/k-l

(B-16)

A
toer [QuVy * Py (AV AL — Ve + Q0]+ E{bk+1/zk'Ukﬂ

where Gk is

= T =1RpT
Gk - (BkPk+lBk + Rk) Bth+1Ak

From (B-17), it 1s clear that the optimum control is given by

u, = “Gyx, .,
and that
P, = Qt AIPk+1Ak B GZ(BIPk+lBk * R,)G,
P, = Q@ * A[Pk+1Ak N ArPk+lBk(BZPk+lBk + Rk)—lB:Pk+1Ak
and
T N A}
by = tr [QV, * Py (VAL = Ve * Q)] + Elb,,,/2,,U,}

2. LINEAR ESTIMATION

Suppose assumptions 1 and 3 of Sec. III-A hold, then all conditional

abilities will be Gaussian. From the state equation (3-1)

AN
Tearse = Bl /2,000 = A

v¥ese T Byuy

(B-17)

(B-18)

(B-19)

(B-20)

(B-21)

prob-

(B-22)
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and from (3-4b)

- _ A
E{Ceyry 7 %) (Raey ~ xk+1/h)T/Zh'Uk} = AV AL Q. (B-23)
since w, s independént of x,. Therefore,
pxy /2, U) = ¢, exp {(xk+l TAX T Byu,) (4, V,A tQl l(xh+1 TAx T Byu,)}
. (B-24)
From the measurement equation (3-2) and from (3-4c)
Th-1
P(z,,1/%,41) = & exp [(z,.+1 TG %) R (zpyy — Ck+lxh)] . (B-25)
Hence, the numerator a of (2-26) 1is
& - T T N1 -
@ = ¢, exp {(Jch+1 - Akxh/k - B,u,) [AkaAk + Qh] (x,,, ~ Akxh/h - B,u,)
Th-1
Fzp T Camia) B (e T Gy xay)) (B-26)
Completion of the square on x, ., yields
¢ = ¢, exp (;k+1 - ;k+1/h+l)TV;il(xh+1 - ;h+1/k+1) * exp [other terms]
(B-27)
where
voioo= [av,aT + 317 +cT, Rlc (B-28)
K+l ket k kel
— A L - _
Te+1/k+1 ° Vi {4,740 + Q] 1“&"&/& T Byuy) Gl Ryiizieg)
Eeareer = Avragn T Buuy YK lnyy G (Ary, T B,u,)] (B-29)
and
Kesr = Vk+lCZ;;ﬁiil (B-30)
From (2-26)
o
Pl /X 2g 8y, tg) 5 — (B-31)
i tdx, g
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But since the first exponential in (B-27) is just a probability distribution

except for a constant and since the other exponent is independent of Xyt

J;.+1 Adx, ,, = €, exp [other terms] (B-32)
and
P(xy41/2,.U,) = ¢4 exp (x,4; ~ xk+l/k+1)TV;11(xb+1 BEITSVITIL (B-33)
The initial conditions ;0/0 and ¥V, are calculated as follows: From (2-27)
and (3-49)
p(zy/x4)p(x,)
Plxg/Z,U ) =
IR IENZNLIEN
_ TA-1 - CTATD -1 -7
exp [(z, = Cyxg) TR (zy ~ Coxg) + (x, = x)T(Q_ )7 (xy ~ 2]
= - _ — - — A N —
JzoexP [(zy - Co’o)rﬁol(zo = Coxg) t (xy ~ xo)T(Q—l) 1(“o - xo)]dxo
— — A _
= ¢, e {[x, — x, — Kj(z, - coxo)]T[cgﬁ“co + Q)]
[x, = x5 ~ Koz = Coxp)]} (B-34)
Therefore,
%950 = %o Y Ky(zy 7 Cpxy) (B-35)
A A
Vol = Q)7+ ClRyC, (B-36)

Therefore by use of (B-28), (B-29), and (B-30), the conditional proba-
bility distribution may be updated. Note that V, and K, can be calculated

a priori, and only x need be generated in real time. Equation (B-29) rep-

k/k
resents a linear system for updating the conditional mean x, ,, which in fact,

is the Kalman Filter.

3. DUALITY PRINCIPLE

The duality principle (ref. 4) is just recognition that in the linear case
the control problem is equivalent mathematically to the estimation problem.
Equations (B-29) and (B-30), which govern estimation, do not appear similar to
(B-20) and (B-19), which govern control because of the formulation of the com-

bined optimization chosen.
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In the given formulation, it was assumed that the present measurement is
available for use 1n determining the present control; an alternate formulation
wonld have the assumption that the present measurement is not available until
the next control.  Such a formulation would have given the estimation result
for the linear case in dual form; however, the given formulation was chosen be-
cause the alternate formulation is a special case of the given formulation.

The assumption that the measurement is not available until the next time can be
handled in the given formulation by augmenting the state variables and using

the additional state variables to delay the measurements.

The cost of greater generality in formulation 1s greater difficulty in de-
riving the duality principle. The above discussion suggests that we replace
V..

A
by P, defined to be the covariance of the next state given all information up to

the covariance of the present state given all information up to the present,
A

the present. P, and ¥V, are related by

A T A

P = AV A T Q (B-37)

k L

If (B-37) is substituted into (B-28):

-1 _ 1 1 .
Vh+1 - P + Ch+1Bh+1Ch+l (B-38)
which when inverted* yields
B, - BT PcT. + R, ) ic,, P (B-39)
Veer = k wCie1 (G PGy k1) R+15 R -
Use of (B-37) a second time yields
A
- T ~1 T
ﬁk+1 = ék+1 + k+1ﬁhAhII h+1ﬁ Ck+1 C&+1ﬁhck+1 R..)) Ch+1P Avsr (B-40)
If (B-39) 1s substituted into (B-30)
A
Kiep = Pc,fﬂﬁ,,;1 *PC“(C,,“P,,CM Ryo)” 1C“1P cmﬂk+1 (B-41)

*
This result may be verified by multiplying (B-38) times (B-39):

y1 _ T A4 A A
VerrVir1 = T F CoarBeniCont? cl. +n

T . B -1
k1P Cnfe T G e tPrCrnr * Bial)

A T -1 A P N N
GnPr ™ Ck+lnh+lck+1 k k+1(ch+1pk k41 Y M) Gty

O S T
Cet1 i n+1 241 kGt h+1 vi1le

- P ! |
= I QG T GenrB 1(9k
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The quantity

A A A A
I = (C PGl  * R, )UC, PCT,, * R, (B-42)
A
may be substituted between CZ+1 and R;il in the first term of (B-41) to yield
A A A -1 A A AL
Kivy = PCi(CuyPhChyy ¥ Ry )) (G PGy By IR

A A A -1 Ar AL
= PG (Co PGy TR Ch+1PhCl+1Rk+l

Ao A Ay
Kpvi = PG (G )P Chyy + Ry : (B-43)

This last trick is nothing more than putting expression (B-41) over a common

denominator.

4. CALCULATION OF J

From (2-14) and (B-9) the minimum cost J? in the linear case is given by

0

J' = E{I(xy,0)) = E{x], Pox,,, * by} (B-44)
where
;0/0 = E{xo/zo}
and where P, and b, are given by (B-20) and (B-21).
A
Since Q,, V,, P,, and Q, are independent of Z, and U, then (B-21) b, will
be independent of these quantities if b,,, is. But this is true for b,; hence,

it is true by induction for all b,, and (B-21) may be rewritten

A
b, = tr [QV, + P (AVAl -V, ., +0Q)] +b,,, . (B-45)
Now let
a
B, = b, —tr [PV,] k <N
A
= er [(Q = PV, + P, (A V,A] + Q)] + B,y (B-46)
anﬂ A
a -
BBy = By = Byyy = tr (M, ~ POV, *+ Pk+1(AthAZ + Q] ;
kR <N (B-47)
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then

J® = E{xT

S oPxg o Toer [PoV] 4

S oa8, . (B-48)

Use of the identity (B-6) on the expected value of a quadratic form 4,

results in

N
JO = E[E{«]P,x,/z,}] + kgl NS, (B-49)

and use of the identity on conditioned expectations proven in A4 yilelds

N N
0 _ T = -Tp
J = E{xoPoxo}‘*kg1 AB, = x Pyxy *ttr [POV]'fhg 5B, (B-50)
where following the motation given in Sec. III
;0 = E{xo}
- T
Vv = E{xoxo}
Rewriting (B-47) with the aid of the identaty
tr [AB] = tr [BA] ) (B-51)
we have
A
08, = tr [P0, * P{,V,]) ' (B-52)
where
P, Q, * AP, A, ~ P, . (B-53)

Now let us calculate the cost J for the situation pictures in fig. III-1,
but where G, and K, are not necessarily optimum. Before actually calculating J,

estimation 1s considered.

It is convenient to define

A T T (B-54)
From fig. III-1
T = I 7K G DA, * K (G oy o) — oy (B-55)
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Since v, and w, have zero mean, 1t follows that if Q = x then E{}o/zo} = 0,

and
E{x,7z,,U,_,} = 0

or

A
E{x‘/Z.,Uk_l} = Xisa (B-56)
Hence this suboptimal estimate is, like the optimal estimate, unbiased; it will

however have a greater variance;
v, - E{(x, - % - AT }
v, = (x, x,)(x, x,) /Z‘,Uh_1 , (B-57)

than the optimal estimate.

To find V, we take an approach analogous (but dual) to that used for sub-
optimal control in Sec. III-C. Let (B-55) describe a system whose state 1s to
be estimated but for which no output exists, i.e., for which the measurement

equation is given by

Z, = Cx, tv, (B-58)
where
c, = 0 . (B-59)
The situation is shown in fig. B-1. Since the conditignal mean of }h 1s zero,
the variance equation (B-28) can be used to calculate Vh:
Vier = Iy~ K G DAVATT ~ K G T+ Qy (B-60)
where
~ A ~ T A A
Q = Elw,w'} = (I~ K 1Cu)QUI = KyyC) * Ry (B-61)
From (B-56) and (3-5)
Xy = x, ~ x5t Kj(zy — Coxp) (B-62)
and so
~ A T A ~
Vo = (I = K,C))Q_,(I -~ K,Cp)" + KR K, = Q_, (B-63)
We now return to the combined problem. The system shown in fig. III-1 can be

described in terms of the state vector
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FIG. B-1 SUBOPTIMAL ESTIMATION

(B-64)

The state equation for the system may be found by inspection of fig. III-1 to be

ZXe+1 T
where
Ak =
W, =
The statistics of w, are
A
Qe
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E{ykyl}

A
(I

Az, Y u,
A, - B,G,
0 (1
w

Ky (Cpiq v

A
B Kk+lck+1)Qk

- B,G

T K1 Gy )4

+ v w

ke1) T U

A
QI ~ K €

~

Q,

k

k+1

)T

(B-65)

(B-66)

(B-67)

(B-68)



We wish to calculate the performance of this system with cost

N N N
~ ~ T,
J = 2 ("ZQA"& + ”ZRk“k - ,,2 [xZthk *(x, * £)GRG(x, * %,)] = Z Q%
k=0 =0 £=0
(B-69)
where
Q * GIRka GZRka
0, - (B-70)
T T
G,R,G, G\R,G,

To perform this calculation, we assume the system is a plant to be controlled

with no input or output. For this case the cost is
-T - il
L = xgPoxy *oer [PyV,] o+ ,El A8, (B-71)
where
P, = ALP, .4, k<N
BN = QN (B'72)
and
;0
Lo * (B-73)
0
and
A A
Q- Q. (I = K_oC)T
Z =

A A
- (I - K_,C)0_, (I = K_,C)Q_ (I =~ K_,c)T + KI R K_,| (B-74)
and

A8, = er [P, ,,0]1 . k<N (B-75)

n

(Note P} = 0).

Consider first (B-72). Partitioning

1,k 12,4

P, - (B-76)
T
P12,k P2.k
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and substitution into (B-72) gives (if the optimum value GN =

0 i1s chosen)

Py v = Q (B-17)
Piagow = Paw = 0 (B-78)
Piow = (4- Bka)TPI,k+1(Ak - BG,) *Q, * GIRG, (B-79)
Pig v = (A - BkGh)T[Plz,h+l(I " K GeiA T Pl,k+lBthJ * GIRan (B-80)
Py v = Ay - Kb+1CA+I)TP2,h+1(I T K G A AI(I - Ka+1ch+1)TP{2.k+1Bka
= GBIy (T T K G A Y GI(B:PL,h+lBk t RG, (B-81)
Comparing (B-79) with (3-35) we note that
Piow - ;k (B-82)
The optimum G, satisfies
A‘;k+13k = c:<BzEk+IB, + R (B-83)
hence, if optimum control is used
Py y = (4, - Bka)TP12,k+1(I T K Cy) (B-84)
But since P12.~ = 0, (B-84) implies that for optimum control
P, 0o . (B-85)

Substitution of

ylelds
~ A
My = br “%+1Qk
From (B-60)
V

rpey ~ U K
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k+lck +1

the partitioned P and Q from (B-76) and (B-68) into (B-75)

A A ~
-~ pT — T _ -
PIZ,k+IQk(I Kka+1) PIZ.ﬁ"‘I(I KkaJrI)Qk + PZ.&+IQk]

(B-86)

YAV AT - K, , G )T (B-87)



therefore

tr [P2,k+IQk] = tr [P2,k+1Vk+1 =Py I KHICM)A,.V:.AZU - K:.+1C;.+1)T]
= tr [P2,k+lvk+1 - Al —Klz+lclz+l)TP2.k+l(I "KuleHMka] - (B-88)

Use of (B-81) results in

~

tr [Pz,k+1Qk] = tr [P2,k+lvk+1] T tr [Pz,kyk]

+ tr {[GN(BTP,,,B, + R,)G, — A[(I K, C,,)"P

k1G4 g, 1B G
~G:BIP12,H1(I—Kk+ICk+I)Ak];,} : (B-89)
By (B-80)
er [(Pyy 0 * Psz.».)T’;.] = tr {[(4, =BG ) Py (I ~ KyiiChi4,

T, _ T _

+ Ak(I Kk+lck+l) P’]’.‘2,k+1(Ak Bkck)
Th TATY

+ AkPk+1Bka + BkaP‘+1Ak

- 2¢T(BTP,, B, * RG]V} (B-90)

Subtraction of (B-90) from (B-89) with the help of (B-60) yields

tr [P2,k+16k] = tr [Pz,k+l?/k+1] Ttr [Pz,kl‘\/k] *oer [?7.“;&]
A
—er P, [T “ Kyt Cue A4
- tr {PIZIHI[A‘;‘AZ(I =Ko Coe)TIE 4o WP, o P{z_,!);,l] . (B-91)
If
Pyyy = - Kis1Cas) V7 P1g i (B-92)
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then, because of (B-60),
. A , A T
R PR S Kk+1(‘k+])ok] =our [~Plv+l(l TR G T K G )) ]
e t A T
= u P YV~ Ko By kD)
mer [Py U 7 K G DAVALL (B-93)

Note that for optimal control since P, , is zero so is P,. VFinally returning

to (B 86) we have, using (B-91) and (B-93)

~

BBy = br @2,“1‘/“1] Ttr [PZ,ka] totr [(Pl2,k * P1T2,b)vk]

~ A ~

~ ~ A
trr [P @ t PL Y Fer [P Y RTD (Veyy T K RuKLL DD - (B-94)

But since

tr [AB] = tr [BTAT] = «¢r [ATBT] (B-95)
(B-94) can be written
~ ~ ~ A
DBy = tr [‘P2,h+lvl+1] Ttr [‘PZ,lez] -~ 2¢r [P;+1(Vk+l _Kk+IRk+lKk+1)]
~ A
+2¢e [PV, ~KRK)) 08, (B-96)
where A N
N3,,, = tr [P,,,Q, *+ Pt,V, " 2kTP/K,R, ~ 2P/K,C,V,] . (B-97)
If the AB,’s are summed we get
N ~ s A N
88 = e [Py Vol v 2 er [PV - KRoKo)1 + M (B-98)

Furthermore

~ A

A
ve (P¥e) = vr (PO ) — 2 tr [P, (1 ~ K,CQ_,]

A
ter AP, ([(I = KyCHQ_ (1 ~ KyC)T + K R KTT) : (B-99)
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Since

e T
Vo = (I - K COVII - K, C)HT + K RK (B-100)
we have
~ A ~ ‘A ~
er [Po¥pl = er [PQ_;] — 2 tr [Py(V, = KR KD + er [P, (Vo] . (B-101)
Therefore N
J o= xPxg toer [Pyl 4 R (B-102)
CAZ #£2 &
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